3.46 \(\int \frac{\cos ^2(e+f x) \sqrt{c-c \sin (e+f x)}}{\sqrt{a+a \sin (e+f x)}} \, dx\)

Optimal. Leaf size=45 \[ -\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 c f \sqrt{a \sin (e+f x)+a}} \]

[Out]

-(Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/(2*c*f*Sqrt[a + a*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.283838, antiderivative size = 45, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.053, Rules used = {2841, 2738} \[ -\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 c f \sqrt{a \sin (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*Sqrt[c - c*Sin[e + f*x]])/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-(Cos[e + f*x]*(c - c*Sin[e + f*x])^(3/2))/(2*c*f*Sqrt[a + a*Sin[e + f*x]])

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x) \sqrt{c-c \sin (e+f x)}}{\sqrt{a+a \sin (e+f x)}} \, dx &=\frac{\int \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2} \, dx}{a c}\\ &=-\frac{\cos (e+f x) (c-c \sin (e+f x))^{3/2}}{2 c f \sqrt{a+a \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.279765, size = 62, normalized size = 1.38 \[ \frac{\sec (e+f x) \sqrt{a (\sin (e+f x)+1)} \sqrt{c-c \sin (e+f x)} (4 \sin (e+f x)+\cos (2 (e+f x)))}{4 a f} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*Sqrt[c - c*Sin[e + f*x]])/Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(Sec[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*(Cos[2*(e + f*x)] + 4*Sin[e + f*x])*Sqrt[c - c*Sin[e + f*x]])/(4*a*f)

________________________________________________________________________________________

Maple [B]  time = 0.211, size = 90, normalized size = 2. \begin{align*}{\frac{ \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}+\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) -2\,\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) +1 \right ) \sin \left ( fx+e \right ) }{2\,f \left ( -1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) \right ) }\sqrt{-c \left ( -1+\sin \left ( fx+e \right ) \right ) }{\frac{1}{\sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x)

[Out]

1/2/f*(cos(f*x+e)^2+sin(f*x+e)*cos(f*x+e)-2*cos(f*x+e)+sin(f*x+e)+1)*sin(f*x+e)*(-c*(-1+sin(f*x+e)))^(1/2)/(-1
+cos(f*x+e)+sin(f*x+e))/(a*(1+sin(f*x+e)))^(1/2)

________________________________________________________________________________________

Maxima [B]  time = 1.857, size = 524, normalized size = 11.64 \begin{align*} -\frac{\frac{2 \, \sqrt{a} \sqrt{c} + \frac{\sqrt{a} \sqrt{c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac{\sqrt{a} \sqrt{c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac{\sqrt{a} \sqrt{c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}{a + \frac{2 \, a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac{a \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}} - \frac{2 \, \sqrt{a} \sqrt{c} - \frac{\sqrt{a} \sqrt{c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac{3 \, \sqrt{a} \sqrt{c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} - \frac{\sqrt{a} \sqrt{c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}}{a + \frac{2 \, a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac{a \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}} + \frac{2 \,{\left (\frac{\sqrt{a} \sqrt{c} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac{\sqrt{a} \sqrt{c} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac{\sqrt{a} \sqrt{c} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )}}{a + \frac{2 \, a \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac{a \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}}}}{2 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-1/2*((2*sqrt(a)*sqrt(c) + sqrt(a)*sqrt(c)*sin(f*x + e)/(cos(f*x + e) + 1) + sqrt(a)*sqrt(c)*sin(f*x + e)^2/(c
os(f*x + e) + 1)^2 + sqrt(a)*sqrt(c)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/(a + 2*a*sin(f*x + e)^2/(cos(f*x + e
) + 1)^2 + a*sin(f*x + e)^4/(cos(f*x + e) + 1)^4) - (2*sqrt(a)*sqrt(c) - sqrt(a)*sqrt(c)*sin(f*x + e)/(cos(f*x
 + e) + 1) + 3*sqrt(a)*sqrt(c)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 - sqrt(a)*sqrt(c)*sin(f*x + e)^3/(cos(f*x +
 e) + 1)^3)/(a + 2*a*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a*sin(f*x + e)^4/(cos(f*x + e) + 1)^4) + 2*(sqrt(a)
*sqrt(c)*sin(f*x + e)/(cos(f*x + e) + 1) - sqrt(a)*sqrt(c)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + sqrt(a)*sqrt(
c)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)/(a + 2*a*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a*sin(f*x + e)^4/(cos(f
*x + e) + 1)^4))/f

________________________________________________________________________________________

Fricas [A]  time = 1.62901, size = 153, normalized size = 3.4 \begin{align*} \frac{{\left (\cos \left (f x + e\right )^{2} + 2 \, \sin \left (f x + e\right ) - 1\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{2 \, a f \cos \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/2*(cos(f*x + e)^2 + 2*sin(f*x + e) - 1)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(a*f*cos(f*x + e)
)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c \left (\sin{\left (e + f x \right )} - 1\right )} \cos ^{2}{\left (e + f x \right )}}{\sqrt{a \left (\sin{\left (e + f x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(-c*(sin(e + f*x) - 1))*cos(e + f*x)**2/sqrt(a*(sin(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-c \sin \left (f x + e\right ) + c} \cos \left (f x + e\right )^{2}}{\sqrt{a \sin \left (f x + e\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^2/sqrt(a*sin(f*x + e) + a), x)